Acoustic phonon engineering in coated cylindrical nanowires

نویسندگان

  • E. P. Pokatilov
  • D. L. Nika
  • A. A. Balandin
چکیده

We have theoretically investigated the effect of a coating made of the elastically dissimilar material on the acoustic phonon properties of semiconductor nanowires. It is shown that the acoustic impedance mismatch at the interface between the nanowire and the barrier coating affects dramatically the phonon spectra and group velocities in the nanowires. Coatings made of materials with a small sound velocity lead to compression of the phonon energy spectrum and strong reduction of the phonon group velocities. The coatings made of materials with a high sound velocity have opposite effect. Our calculations reveal substantial re-distribution of the elastic deformations in coated nanowires, which results in modification of the phonon transport properties, and corresponding changes in thermal and electrical conduction. We argue that tuning of the coated nanowire material parameters and the barrier layer thickness can be used for engineering the transport properties in such nanostructures. © 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoscopic phonon transmission through a nanowire-bulk contact

We calculate the frequency-dependent mesoscopic acoustic phonon transmission probability through the abrupt junction between a semi-infinite, one-dimensional cylindrical quantum wire and a three-dimensional bulk insulator, using a perturbative technique that is valid at low frequency. The system is described using elasticity theory, and traction-free boundary conditions are applied to all free ...

متن کامل

Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires

Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. However, despite strong scientific and practical importance, conclusive experimental evidence of confined acoustic phonon polarization branches in individual free-standing nanostructures is lacking. Here we report results of Brillouin-Mandelstam light scattering spectroscopy, which...

متن کامل

Observation of coherent acoustic and optical phonons in bismuth nanowires by a femtosecond pump-probe technique

Coherent acoustic and optical phonon oscillations in Bi nanowire samples were studied with a femtosecond pump-probe technique. Laser pulses of 50 fs excited simultaneously acoustic oscillations at a frequency of about 9.5 GHz and optical phonons in the terahertz range. The transmission signal of nanowires on a glass substrate and the signal of light scattered from freestanding nanowires were me...

متن کامل

Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering

We investigate the effects of electron and acoustic phonon confinements on the low-field electron mobility of thin, gated, square silicon nanowires SiNWs , surrounded by SiO2. We employ a self-consistent Poisson–Schrödinger–Monte Carlo solver that accounts for scattering due to acoustic phonons confined and bulk , intervalley phonons, and the Si /SiO2 surface roughness. The wires considered hav...

متن کامل

Acoustic Phonon Spectrum Modification in Nanostructures and Its Effect on Lattice Thermal Conductivity

The feature size of conventional electronic devices has already fallen below the acoustic phonon mean free path (MFP) in silicon, which is estimated to be 50 nm – 300 nm at room temperature. The lateral dimensions of nanowires and the size of quantum dots in quantum dot superlattices (QDS) fabricated by different self-assembly techniques are approaching the wavelength of a dominant phonon mode,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005